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An isotropic cylindrical shell with initial imperfection of corrugation type is con- 
sidered, along whose longitudinal section a periodic system of congruent holes with lattice 
spacing of length H is located. The outline of the j-th hole is denoted by 1,3, L = UL 3. The 
direction of the x axis agrees with the direction of the shell axis, the y axis is orthogonal 
to it, and the origin is in the center of the outline I~. Tensile forces are applied to the 
shell and there are no bending moments 

x = $ 1 ,  Sy = $ 2 ,  S ~ y = l ~ = M u  = M ~ = O ,  (I) 

the hole outlines are free from normal and tangential forces, bending moments and transverse 
forces. The tangential stress on the L 3 outlines is assumed constant and subject to deter- 
mination just as the shape of the hole. 

Let ~, q be an orthogonal curvilinear coordinate system such that the line f ~ 0 agrees 
with the outline L 0. The boundary conditions on L 0 are 

S~ = S ~  = M~ = M ~  = Q~ = O, S n = S *  = c o n s t .  ( 2 )  

The differential equations for the stress state of an isotropic cylindrical shell with 
initial imperfection w 0 [2]: 

DRA2(w - -  Wo) + 02U/Ox ~ = O, A2U - -  EhR-lO2(w - -  Wo)/Ox 2 = O. (3)  

Here U is the stress function, w is the deflection, R, h are the shell radius and thickness, 
D ~ Eh3/12(l--v2); E, v are the elastic modulus and Poisson ratio, and A = 02/Ox 2 ~ 02/Oy 2. 

Introducing the complex stress function T=U/D~i~12(l--v2)(w--w0)/h , we reduce the 
system (3) to one differential equation whose general solution can be represented by the 

contour integral 

2 

(z, 2 ) =  .f a_E 1 Fk (z - -  % z - -  ~) [g2k-a (t) + ig2h (t)] dt, ( 4 )  
L = 

here z - (y + ix)/a; z = (y - ix)/a, a is the linear dimension, r = r(t) is the affix of a 
point on the contour L and gk(t) are unknown function to be determined from the boundary 
conditions. The kernels of (4) are presented in [3], their expansions in powers of the 
parameter e2= ~12(I- v2)a2/16Rh, assumed small have the form 

F~ = F~ 1-[-, iFk2, k =  1 ,2 ,  

Fll  = 0.5 + 2:r-le2Re[w(2zz - -  z 2) - -  zz] + O(e4), 

and 

r l ~  = - 2 ~  - lo)  + e 2 R e ( z z  - -  zV2) + O(e4), 

I"2, = Im[ - - z  + ~e2((2z3/3 ~- 6zz2)o) ~ 4z~-z)] + O(e4), 

F22 : hn[4n-azco ~ e~(z2/6 -[- 3z-z2/2)] ~ O(e4), (o = 0.5 In zz~-  const.  

The a d d i t i o n a l  c o m p o n e n t  U~(z, z ) =  0.2542Re[($1 + S2)zz ~, ($1 - -  Sz d7 2iSx~)z2]. that takes 

account of condition (I) should be introduced into (4). The force, moment, and transverse 
force components in f, N coordinates are expressed in terms of the stress function and the 
deflection according to the formulas 
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S~ -[- S~ = 4a-ZO~U/~z()z, 

S~ - -  S~ -~ 2iS~n = 4a-:e~-~Oc)~U/~gz 2, 

M~ + M,~ = --4a-2(t  + v)Dc~u~/OzOz, 

M~ - -  M~ - -  2 i M ~  = 4a-2e~m(l - -  ~,)DO~w/Oz 2, 

Q~ -~ iQ~ : 8ia-~e~ODOaw/Oz~-Oz, 

(5) 

where # is the angle between the directions of the y axis and the tangent to the coordinate 
line f on its increasing side. 

Separating into real and imaginary parts in (4), we subject them to the boundary condi- 

tions (2) according to (5). We obtain a system of singular integral equations in the unknown 

functions gk(t). We set gh(t)= ~ 82Jg~j(t), 8 = D/a s and introduce the functions 
j=0 

!I ] q)kj (z) = ~25 ighj (t) --z --Tg~+2'J~ (t) In (z - -  ~) ga+zd (t) dt ,  

2~ ~ g~+~,j !~) = ~' 
q ) k + 2 , j ( z ) = ~ 3  z - - x  dr, qb(z) (z), k = L 2 ;  ] = 0 , 1 , 2  . . . . .  

L 

(I)~ (z) = 8 ,f [i (z -- ~ - -  37) g,o (t) + gzo (t)] dt, 
L 

~o, (z) = 5 ,f [3i (~ -- z) g~o (t) -- g~o (t)] dr. 
L 

Let the function z = ~(~)= ~ e2J~j(~) execute a conforma! mapping of the exterior of the 

multiconnected contour L into the exterior of the periodic system of circles T = {i~- nffi 
=I, n = 0, q-i, +2,...}. Then by retaining components in e0 and e 2 we convert the system of 
singular integral equations into the following boundary-value problem of complex variable 
function theory 

+ 

=o s~ - s~ + 2 r (;) + %0 (;) = So; (7) 
0)0 \ fDO _ _ 

4Re [qb,~ (z) + qg~ + 4812 V 2 (i - -  v 2) w o (z, -z)/h - -  2Re q~o (z)] = S~; (8 )  

-2--_ t .2 ~Oo (~,~ (;) -~ ~,~ (;)) + % (%~ (~) + ~ (;)) + 

% ] 

%0 (z) + z~'~ o (z) + %0 (z) = h - '  V !~2 (,I - v,)~9,Wo/Cg-z ~-, (IO) 

where  S * = S o + 8 S I + O ( e ~ ) ;  ~j w~(~); %o(Z)=  %o(z)  dz; and  t h e  n o t a t i o n  r  i s  o b t a i n e d  f o r  
Z 0 

r  

We obtain a solution of the problem of a periodic system of equally strong holes in a 
plate from (6) and (7), we find the correction factors for ~z that take account of shell 
curvature from (8) and (9), and the functions ~i0, ~30 associated with the influence of the 
initial imperfection from (i0). The derivation of (i0) repeats the reasoning of [4] in the 
study of plate bending. 

Let us use the method of [5] to solve problems of the type (6)-(10) for periodic systems 
of holes. If the function F0(z ) is defined in the strip llm z I < H of the Complex z plane, 
then the function F(z) that has the period Hi and agrees with F0(z ) in this strip can be 
represented in the form 
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Fig. i 

z)2h+ld~[ t 
F (z) = F o (z) + 

h = 0  LO 

co 

o%~ = ~_~ n - ~  )~ = t/H. 
n ~ l  

In the neighborhood of z = 0 let the following expansion hold .F0(z ) = 

~ a  z ~-2~ Then ~,m] 

~ ) $ ' n  F , �9 Om (z), Fo~ (z) = 
'n't=o 

F ( z ) =  ~ B~z 2~+1, 

B-m = ~om -+- L2~m -J- )~4~ra + O(L6), m = 1, 2 ..... 

B o = --2(XzL213o1 -- 2M(~213~ -- 3r162 -}- O():), 
B1 = 2~4~:13ol + O(~S). 

(Ii) 

Taking expansions of the form (ii) for the unknown functions, substituting them into 
(6)-(10) and equating the coefficients of identical powers of A, we obtain a system of non- 
linear algebraic equations whose numerical solution is performed by successive approximations. 

The shape of the equally strong hole is determined by the equations [6] r = I~(ei~ 

An estimate of the stiffness of a shell with holes can be performed by determining the 
reduced parameters. Let the strain energy of a linear element along the line of centers from 
the hole edge to the middle of a segment between the centers of this and an adjacent hole 

H/z 
9= ~ SxUxdx in the perforated shell with elastic constants E, v equal the strain energy ~0 

R 0 

of a linear element of length H/2 along the same line in a solid shell whose elastic constants 

are E 0, w 0. We call the constants E 0 the reduced elastic modulus and Poisson ratio and the 

ratio kre-- E~ v~ the reduction factor. Using the representation of the stress and dis- 
E/(I + v)' 

r 
placement components in terms of the functions (P2, r and their derivatives Sx= Re(2q)~+ z~4 
+~2), 2~u==Im(• --z-~--~2), 2~ = E / ( I  + v ) , •  ( 3 - - v ) / ( l  + v), we have 

8 = T / 2 F ,  T = [QLa - -  Q-2 ( C a  - -  3C2)] ( 2 H - 2  - -  0 ,25Ro 2) - -  

- -  O-a (Ca - -  C2) In (0.5H/Ro) + CaC 2 ( H2/8 - -  R~) - -  Q~ (C1 -}- 3c2) (H ' / 64  - -  R~/4).  

Here  C, = S I - - 0 . 5 ~ e ~ D - l q - Q o ;  C~ = C1 - - v ( S 1  Jr $2 Jr 2ne~D-a)/(i q- v); Q~ = D1 q- e2P~ (] = 0, •  
•  D i ,  P j  a r e  c o e f f i c i e n t s  o f  t h e  e x p a n s i o n  o f  t h e  f u n c t i o n s  ~ 2 o ( z ) ,  ~ozl(z) i n t o  
s e r i e s  o f  t h e  f o r m  ( 1 1 ) .  I f  we s e t  D3 = P3 = Ro = 0 and  i n t r o d u c e  E o, v o i n  p l a c e  o f  E, v ,  
t h e n  3o=To/2Fo, w h e r e  To = Sa(S1 ---'v2S2)H~/8( i -4- Vo),: 2Fo = Eo/(l q- Vo) .  From t h e  e q u a l i t y  O = D o 
f o l l o w s  k r ,  = T0/T.  
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TABLE 1 

F 

S 0,2 0,$ 0,6 

l,O 
0,8 
0,6 
0,4 

3,26 
2,92 
2,55 
2,12 

hre 

0,816 
0,843 
0,906 
1,009 

3,4i 
3,06 
2,68 
2,25 

h r e  

0,843 
0,853 
0,904 
0,992 

3,65 
3,20 
2,82 
2,38 

~ re 

0,887 
0,874 
0,910 
0,984 

3,69 
3,34 
2,96 
2,51 

h re 

0,963 
0,912 
0,929 
0,988 

Calculations were performed for the case when the initial imperfection is given by the 
function w 0 =/0cos(2~z/H-~cy/R), simulating a cylindrical shell with a spiral (for c = a) or 
cyclic (for c = 0) corrugation having the amplitude f0 the slope H/2~R and the same spacing H 
as the perforation spacing. It is assumed in the calculations that the Poisson ratios v, u 0 
of the initial and reduced media are identical and equal to 0.3. 

Shown in the figure is the shape of the equally strong hole in a shell with a cyclic 
corrugation for different values of the loading parameters S = $2/$I, the lattice % = a/H, 
the corrugation depth F = f0Eh/8RS1 and the shell curvature ~2 For the curves 2-7 e2 = 0.2 
and correspondingly S = I;,I;I;0.6; 0.6; 0.6, ~ =0.2; 0.1; 0.1; 0.2; 0.1; 0.1~ F = 0.4; 0.4; 0; 0.4; 0.4; 0. 
For the curve 1 S = I, % = 0.i, F = 0, e 2 = 0.4. The table illustrates the behavior of the 
stress concentration factors on the hole outline a = S#/S I and the reduction as a function of 
the relationships of the transverse and longitudinal forces and the depth of the corrugation. 

The following features of the shape of an equally strong hole are detected. For small 
F, %, ez the hole is elongated along the shell axis, it is reconstructed as each of these 
parameters grows, and turns out to be extended along the cross section. For instance, for 
F = 0, ~ = 0.I, ~2 = 0.2 the ratio between the length of the transverse radius and the length 
of the longitudinal equals 0.3, 0.65, 1.5, respectively for S = 0.4, 0.6, I. The stress 
concentration factor a grows as F, ez, S increase and is practically invariant as ~ changes. 
As F grows the reduction factor kre increases for S ~ 0.6 and decreases for lesser values of 
S. For constant F it diminishes as S and e2 grow. 

In the case of the spiral corrugation, the hole is rotated in the direction of initial 
shell deflection. However, this rotation is insignificant. The greatest deviation in the 
values of the radii having identical slope ~ to the shell axis is achieved for ~ = • For 
example, [r(--~/6) -- r(n/6)]/r(O) for F = 0.4, S = i ~ 0.8, e 2 = 0 N 0.4 and the ratio between the 
lattice spacing and the shell radius equal to 0.5 fluctuates between 3.5 and 7% limits. 

The calculation results lose fidelity for e 2 > 0.5, A > 0.4, F > 5, S < 0.3. The first 
three constraints are associated with the features of the small parameter methods used in 
solving the problem, and the last with the impossibility of the existence of equally strong 
shape of a hole for small S. 
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